

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 1 : 2024

ISSN : 1906-9685

UNLOCKING SECURITY: AN IN-DEPTHANALYSISOFKEY BASED CRYPTOGRAPHIC

ALGORITHMSANDTHEIR USES

Swathi Kambhampati, Maramreddy Kusuma, Mandava Hitesh Chandrachowdary,

Mirzatabassum Fathema, Nagudu Harsha Vardhan, Department of Electronics &

Communication Engineering, NRI Institute of Technology, Pothavarappadu (V), Agiripalli (M),

Eluru (Dt)-521212

Abstract:

Information security is the process of safeguarding data. It safeguards its availability, privacy and

integrity. The capacity to secure data from attacks, as well as efficiency and speed are the two key

features that separate one cryptography algorithm from another. Security is the most difficult issue in

the present world, and the various security dangers in data security must be avoided in order to provide

consumers with more privacy while still permitting high information availability and Integrity. Data

encryption employing various data encryption techniques will increase the security of data

transmission. This paper primarily focuses on a comparative analysis of symmetric algorithms (AES,

DES).

Keywords: DES, AES, Encryption, Decryption.

1. Introduction

John devoted significant time to exploring various methods of enhancing DES. While considering

options like longer key lengths and more encryption rounds, he realized that these approaches might

not provide lasting security improvements. Instead, he devised a novel solution that would enable the

company to continue using DES while enhancing its security. John's approach involved using a

secondary key to further encrypt DES-encrypted data. This secondary key, randomly generated for

each encryption operation, would be stored separately from the encrypted data. To decrypt the data,

the secondary key would need to be provided along with the primary key used for DES encryption.

Implementing this approach required significant changes to the company's encryption system,

including modifying the key generation process and adding new storage and retrieval mechanisms for

the secondary key. Despite these challenges, John believed that the enhanced security benefits would

outweigh the costs of these changes. After months of development and testing, John's enhanced

encryption system was deployed in the company's production environment. The results were

impressive - the system maintained the security of the company's data while also allowing for the

continued use of the legacy DES algorithm. John's innovative approach to enhancing DES's security

earned praise from his colleagues and superiors, establishing him as a leader in encryption and security.

His work paved the way for further improvements to the company's security systems and demonstrated

the importance of innovation and creativity in the constantly evolving world of technology. The paper

also presents compact architectures for AES Mix Column and its inverse, aimed at reducing the area

cost in resulting AES implementations. In the hardware implementation of AES with direct mapping

substitute byte optimization, the Mix Column/Inverse Mix-Column transformation demands the

utilization of logic resources, affecting the critical path delay and resulting throughput. The proposed

architectures, based on byte and bit-level decomposition, lead to two types of architecture that

demonstrate deeper resource sharing within byte and between bytes, along with rearrangement of

output terms with respect to FPGA architecture at the bit level. The proposed architectures were

investigated on an FPGA-based implementation platform, resulting in a 40% reduction in

reconfigurable logic area compared to separate implementation of Mix-Column and Inverse Mix-

Column, along with a 9% reduction in path delay. Experimental results demonstrate that the proposed

313 JNAO Vol. 15, Issue. 1 : 2024
architecture can significantly reduce the area cost compared with previous implementations. This paper

introduces an outer-round only pipelined architecture for FPGA implementation of the AES-128

encryption processor. The design utilizes Block RAM to store S-box values and exploits two types of

Block RAM. By consolidating operations into a single round, critical delay can be reduced. As network

transmission speeds increase to gigabits per second (Gbps), software-based implementations of

cryptographic algorithms become inadequate. Hardware-based implementations, using optimization

techniques like pipelining and look-up tables, can significantly improve throughput and reduce key

generation time. Additionally, packaging cryptographic algorithms and key generation in a chip

enhances physical security, as they cannot easily be read or altered by external attackers.Some

implementations use field programmable gate arrays (FPGA), while others use application-specific

integrated circuits (ASIC). ASICs lack flexibility and have high development costs and long

development cycles. The AES algorithm has become the default choice for various security services

due to its security and versatility. This paper proposes a high-speed, non-pipelined FPGA

implementation of the AES-CCMP cipher for wireless LAN, utilizing Xilinx development tools and

Virtex-It Pro FPGA circuits. The AES CCMP core aims to provide high speed with sufficient security,

operating at 194/148MHz for encryption/decryption, resulting in throughputs of 2.257 Gbits/sec and

1.722 Gbits/sec, respectively. Compared to software implementations, hardware-based approaches

offer higher security and faster encryption speeds. The paper includes a comparison with similar

existing implementations. The AES S-box, comprising a 256-entry table, replaces each input byte of

the State matrix independently. The S-box performs two transformations: first, replacing each input

byte with its multiplicative inverse in GF(28), with the element {00} being mapped onto itself; second,

applying an affine transformation over GF(28). For decryption, the inverse S-box is obtained by

applying the inverse affine transformation followed by multiplicative inversion in GF(28).The

increasing need for data protection in computer networks has led to the development of several

cryptographic algorithms. Hardware implementations of these algorithms are more physically secure

than software implementations, as they cannot be easily modified by outside attackers. Hardware

implementation offers better speed and reliability, making it a wise choice for achieving higher

performance in today's heavily loaded communication networks. This paper presents a hardware

implementation of the AES algorithm using Xilinx– Virtex5 Field Programmable Gate Array (FPGA).

To achieve higher speed and lower area, operations like Sub Byte, Inverse Sub Byte, Mix Column, and

Inverse Mix Column are designed as Look Up Tables (LUTs) and Read Only Memories (ROMs).

Encryption is typically performed just before data transmission to fully utilize channel resources,

requiring the encryption algorithm to match the data transmission speed. Achieving high throughput

for encryption in a communication channel with a high data rate is challenging. The AES algorithm

(also known as the Rijndael algorithm) is widely used in wired and wireless digital communication

networks for secure data transmission, especially over public networks. This paper presents a hardware

implementation of the AES Rijndael Encryption and Decryption Algorithm using Xilinx Virtex-7

FPGA. The hardware design is based on pre-calculated look-up tables (LUTs), resulting in a less

complex architecture with high throughput and low latency. The AES has three formats: AES-128,

AES-192, and AES-256, and the encryption and decryption blocks for all three formats are efficiently

designed using Verilog-HDL and synthesized on a Virtex-7 XC7VX690T chip. Power analysis is

conducted using Xilinx XPower Analyzer, and the proposed architecture demonstrates good efficiency

in terms of latency, throughput, speed/delay, area, and power.The Advanced Encryption Standard

(AES) is an approved cryptographic algorithm that can protect electronic data and can be programmed

in software or implemented in pure hardware. Field Programmable Gate Arrays (FPGAs) offer a faster

and more customizable solution for AES implementation. This paper presents the implementation of

AES on FPGA using VHDL and ModelSim SE PLUS 5.7g software for simulation and optimization

of synthesizable VHDL code. The code is synthesized and implemented on Xilinx - Project Navigator,

ISE 8.2i suite, using an iterative design approach to minimize hardware consumption. The proposed

architecture integrates the AES encrypter and decrypter, resulting in a low-complexity architecture

suitable for hardware-critical applications like smart cards, PDAs, and mobile phones. Additionally, a

speech encryption algorithm based on a 4D hyper chaotic system is proposed to protect speech security

in the cloud, showing good discrimination, robustness, recall, precision, and retrieval efficiency

compared to existing methods[1-7].

314 JNAO Vol. 15, Issue. 1 : 2024
2. Proposed Method

2.1 INTRODUCTION OF DES

DES (Data Encryption Standard) algorithm purpose is to provide a standard method for protecting

sensitive commercial and unclassified data. In this same key used for encryption and decryption

process.

2.2 ENCRYPTION AND DECRYPTION

Figure.1 DES Algorithm

DES processes a 64-bit plaintext input and a 56-bit key (with 8 parity bits), producing a 64-bit output

block.

2.3 STEPS INVOLVED IN DES ALGORITHM

The plaintext block undergoes bit shifting operations.

The 8 parity bits are removed from the key using a key permutation.

The plaintext and key undergo the following process:

The key is divided into two 28-bit halves.

Each half of the key is rotated by one or two bits, depending on the round.

The rotated halves are combined and subjected to a compression permutation to reduce the key to 48

bits, which is used to encrypt the current round's plaintext block.

The rotated key halves from the previous step are used in the next round.

The data block is divided into two 32-bit halves.

One half undergoes an expansion permutation to increase its size to 48 bits.

The result of step 6 is XORed with the 48-bit compressed key from step 3.

The output of step 7 is passed through an S-box, which substitutes key bits and reduces the block back

to 32 bits.

The output of step 8 undergoes a P-box permutation.

The result from the P-box is XORed with the other half of the data block. The two halves are then

swapped and become the input for the next round.

2.4 ADVANCED ENCRYPTION STANDARD

In the AES method, we implement AES-128, using a 128-bit key for encrypting 128-bit data with the

same S-box. The encryption process involves 14 rounds, with each round comprising Add Round Key,

SubBytes, ShiftRows, and MixColumns operations. Round 0 includes only the Add Round Key

operation, while Round 14 includes SubBytes, ShiftRows, and Add Round Key operations, requiring

3 clock cycles. Rounds 1 to 13 encompass all four operations, with each operation executed in a distinct

clock cycle. Consequently, once the hardware is implemented for Add Round Key, SubBytes,

315 JNAO Vol. 15, Issue. 1 : 2024
ShiftRows, and MixColumns, the same hardware can be used for all 14 rounds, as none of the

operations share the same clock cycle.

Figure.2. AES Algorithm

The AES encryption process consists of a specific sequence of four operations, namely AddRoundKey,

SubBytes, ShiftRows, and MixColumns. This process is serial, meaning the output of one round

becomes the input for the next round. Consequently, the same hardware can be utilized for each round.

The data is structured in a 128-bit matrix, where each column contains four elements of 8 bits each,

totaling 32 bits per word. For the conventional AES algorithm, a total of one S-box and one

MixColumns operation are required.

2.5 IMPLEMENTATION OF AES ALGORITHM

The AES algorithm implementation involves four operations: SubBytes, ShiftRows, MixColumns, and

AddRoundKey. The architecture for the 256-bit AES algorithm is depicted above. There are a total of

14 rounds for both encryption and decryption. After encryption, the ciphertext is transmitted across the

channel and decrypted using the same key.

In the 128-bit AES algorithm, the key size is 128 bits, and all data sizes are 128 bits, including the

message to be encrypted, the ciphertext, and the decrypted message. The internal data structure for

128-bit data is a 4x4 matrix, where each element is 8 bits. Since all operations are performed on a

column basis, the 128-bit data is converted into a 4x4 matrix with each element being 8 bits.

The 128-bit AES encryption block is implemented in 14 rounds, with each round consisting of

AddRoundKey, SubBytes, ShiftRows, and MixColumns. Round 0 involves only the AddRoundKey

operation, while Round 14 includes SubBytes, ShiftRows, and AddRoundKey operations, requiring 3

clock cycles. Rounds 1 to 13 include all four operations. Each operation is performed in a distinct clock

cycle. Therefore, once the hardware is implemented for AddRoundKey, SubBytes, ShiftRows, and

MixColumns, it can be used for all 14 rounds without sharing clock cycles. The sequence of round

operations with the specific sequence of operations is shown in the figure above, illustrating the serial

process of the AES algorithm where the output of one round is the input to the next, allowing for the

use of the same hardware for each round.

Figure.3. Mathematical Expression

316 JNAO Vol. 15, Issue. 1 : 2024

Figure.4. Cycles required in Each Round

2.6 5.3 FOUR STAGES OF EACH ROUND

SubBytes: The SubBytes transformation, used in encryption, involves substituting each byte of the

state with a value from a lookup table called the S-Box. This is a non-linear byte substitution applied

independently to each byte of the state. For decryption, the inverse operation, InvSubBytes, is used.

ShiftRows: The ShiftRows operation in encryption involves shifting the bytes in each row of the state

matrix to the left. The number of shifts is based on the row number: no shift for row 0, 1 shift for row

1, 2 shifts for row 2, and 3 shifts for row 3. MixColumns: The MixColumns transformation operates

on the columns of the state matrix, transforming each column into a new column using matrix

multiplication with a constant square matrix. This transformation is performed in the Galois Field,

treating the bytes as polynomials rather than simple numbers. AddRoundKey: The AddRoundKey

operation is applied one column at a time, similar to MixColumns. It involves adding a round key to

each column matrix, performing a matrix addition operation.

2.7 5.4 ENCRYPTION AND DECRYPTION

In encryption, SubBytes, ShiftRows, MixColumns, and AddRoundKey are performed in all rounds

except the last round. The MixColumns transformation is omitted in the final round of encryption. For

decryption, the process mirrors encryption, but with nine rounds of InverseShiftRows, InverseSubBytes,

InverseAddRoundKey, and InverseMixColumns transformations.

2.8 5.5 RIJNDAEL S-BOX

The Rijndael S-Box is a square matrix used in the Rijndael cipher, functioning as a look-up table. It is

generated through a process that involves determining the multiplicative inverse of a given number in

GF(28) and then applying an affine transformation to the result.

Multiplicative Inverse Phase: In this phase, the input byte is inverted by substituting a value from the

multiplicative inverse table.

Affine Transformation: The selection of the irreducible polynomial and the designated byte are crucial

in this phase. For Rijndael AES, the irreducible polynomial x^8 + x^4 + x^3 + x + 1 is used, and the

designated byte 0x63 is chosen. The affine transformation consists of two operations: multiplication of

an 8x8 square matrix and addition of an 8x1 constant column matrix.

3.Results and Discussion

3.1 RTL SCHEMATIC OF AES

Figure.5. RTL Schematic of AES

317 JNAO Vol. 15, Issue. 1 : 2024
3.1.1 SIMULATION RESULTS OF AES

Figure.6. Simulation results of AES

3.2 AREA IN AES

Figure.7. Area in AES

3.3 DELAY IN AES

Figure.8. Delay in AES

3.4 RTL SCHEMATIC OF DES:

Figure.9. RTL Schematic of DES

318 JNAO Vol. 15, Issue. 1 : 2024
3.5 SIMULATION RESULTS OF DES

Figure.10. Simulation results of DES

3.6 AREA IN DES

Figure.11. Area in DES

3.7 DELAY IN DES

Figure.12. Delay in DES

3.8 EVALUATION TABLE FOR AREA, DELAY

 Area (LUT’s) Delay (ns)

AES TOP(128-bit) 4636 6.548

DES TOP(64-bit) 688 3.521

3.9 Advantages- Dis-Advantages and Applications

ADVANTAGES: AES ADVANTAGES:

➢ High security.

➢ Resistance to attacks.

➢ Speed of Operation.

DES ADVANTAGES:

➢ Simplicity.

➢ Compatibility.

DISADVANTAGES: AES DISADVANTAGES:

➢ 192 and 256 have far less security.

➢ Hard to implement with software.

DES DISADVANTAGES:

➢ Weakly secured algorithm.

➢ It is slower than AES.

➢ It is not flexible.

Cloud Storage: Data stored in the cloud is encrypted before transmission and stored securely.

Encryption keys can be managed by the user or the cloud service provider, and access to encrypted

data is controlled through authentication mechanisms. Decryption involves retrieving the encrypted

319 JNAO Vol. 15, Issue. 1 : 2024
data and using the appropriate decryption key. VLSI-based cryptographic hardware accelerators can

improve decryption performance, enabling fast and secure access to cloud-stored data.

VPNs and Wi-Fi Security Protocols: VPNs and Wi-Fi security protocols use encryption algorithms to

secure data during transmission. Data is encrypted at the source and decrypted at the destination. This

process ensures data confidentiality and security while traveling over the network.

Mobile Apps (e.g., WhatsApp and LastPass): Some mobile apps implement end-to-end encryption,

where data is encrypted on the sender's device and decrypted only on the recipient's device. This

approach prevents intermediaries from accessing or intercepting the data. Robust encryption

mechanisms and secure communication protocols in mobile apps protect user data from unauthorized

access.

4. Conclusion

After conducting a comparative analysis of AES and DES for security applications, it can be concluded

that AES is more secure and efficient than DES. AES is a symmetric encryption algorithm that utilizes

larger key sizes (128-bit, 192-bit, or 256-bit) compared to DES, which uses a fixed 56-bit key. AES

offers superior resistance to cryptographic attacks, such as brute-force attacks and differential

cryptanalysis, due to its larger key size and more complex key scheduling algorithm. Conversely, DES

has been shown to be vulnerable to various attacks, including brute-force attacks, differential

cryptanalysis, and linear cryptanalysis. Additionally, DES is slower than AES due to its simpler key

scheduling algorithm. In terms of implementation, AES is widely utilized in a variety of security

applications, including online banking, data encryption, and military applications, while DES is

seldom used in modern systems due to its vulnerabilities and limitations. Overall, AES is a more secure

and efficient encryption algorithm than DES and is the preferred choice for most security applications.

Reference

1. Prashanti.G, Deepthi.S & Sandhya Rani.K. ”A Novel Approach for Data Encryption Standard

Algorithm”. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 –

8958, Volume-2, Issue-5, June 2013,pp. 264).

2. Nalini C. Iyer ; Deepa ; P.V. Anandmohan ; D.V. Poornaiah “Mix/InvMix- Column

decomposition and resource sharing in AES”.

3. Yulin Zhang ; Xinggang Wang; “Pipelined implementation of AES encryption based on FPGA”

2010 IEEE International Conference on Information Theory and Information Security.

4. C. Sivakumar ; A. Velmurugan ; “High Speed VLSI Design CCMP AES Cipher for WLAN

(IEEE 802.11i)” 2007 International Conference on Signal Processing, Communications and

Networking.

5. P. S. Abhijith ; Mallika Srivastava ; Aparna Mishra ; Manish Goswami ; B. R. Singh ; “High

performance hardware implementation of AES using minimal resources” 2013 International

Conference on Intelligent Systems and Signal Processing (ISSP).

6. N. S. Sai Srinivas ; Md. Akramuddin; “FPGA based hardware implementation of AES Rijndael

algorithm for Encryption and Decryption” 2016 International Conference on Electrical, Electronics,

and Optimization Techniques (ICEEOT).

7. Ashwini M. Deshpande ; Mangesh S. Deshpande ; Devendra N. Kayatanavar; “FPGA

implementation of AES encryption and decryption” 2009 International Conference on Control,

Automation, Communication and Energy Conservation

