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Abstract: 

Information security is the process of safeguarding data. It safeguards its availability, privacy and 

integrity. The capacity to secure data from attacks, as well as efficiency and speed are the two key 

features that separate one cryptography algorithm from another. Security is the most difficult issue in 

the present world, and the various security dangers in data security must be avoided in order to provide 

consumers with more privacy while still permitting high information availability and Integrity. Data 

encryption employing various data encryption techniques will increase the security of data 

transmission. This paper primarily focuses on a comparative analysis of symmetric algorithms (AES, 

DES). 
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1. Introduction 

John devoted significant time to exploring various methods of enhancing DES. While considering 

options like longer key lengths and more encryption rounds, he realized that these approaches might 

not provide lasting security improvements. Instead, he devised a novel solution that would enable the 

company to continue using DES while enhancing its security. John's approach involved using a 

secondary key to further encrypt DES-encrypted data. This secondary key, randomly generated for 

each encryption operation, would be stored separately from the encrypted data. To decrypt the data, 

the secondary key would need to be provided along with the primary key used for DES encryption. 

Implementing this approach required significant changes to the company's encryption system, 

including modifying the key generation process and adding new storage and retrieval mechanisms for 

the secondary key. Despite these challenges, John believed that the enhanced security benefits would 

outweigh the costs of these changes. After months of development and testing, John's enhanced 

encryption system was deployed in the company's production environment. The results were 

impressive - the system maintained the security of the company's data while also allowing for the 

continued use of the legacy DES algorithm. John's innovative approach to enhancing DES's security 

earned praise from his colleagues and superiors, establishing him as a leader in encryption and security. 

His work paved the way for further improvements to the company's security systems and demonstrated 

the importance of innovation and creativity in the constantly evolving world of technology. The paper 

also presents compact architectures for AES Mix Column and its inverse, aimed at reducing the area 

cost in resulting AES implementations. In the hardware implementation of AES with direct mapping 

substitute byte optimization, the Mix Column/Inverse Mix-Column transformation demands the 

utilization of logic resources, affecting the critical path delay and resulting throughput. The proposed 

architectures, based on byte and bit-level decomposition, lead to two types of architecture that 

demonstrate deeper resource sharing within byte and between bytes, along with rearrangement of 

output terms with respect to FPGA architecture at the bit level. The proposed architectures were 

investigated on an FPGA-based implementation platform, resulting in a 40% reduction in 

reconfigurable logic area compared to separate implementation of Mix-Column and Inverse Mix-

Column, along with a 9% reduction in path delay. Experimental results demonstrate that the proposed 
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architecture can significantly reduce the area cost compared with previous implementations. This paper 

introduces an outer-round only pipelined architecture for FPGA implementation of the AES-128 

encryption processor. The design utilizes Block RAM to store S-box values and exploits two types of 

Block RAM. By consolidating operations into a single round, critical delay can be reduced. As network 

transmission speeds increase to gigabits per second (Gbps), software-based implementations of 

cryptographic algorithms become inadequate. Hardware-based implementations, using optimization 

techniques like pipelining and look-up tables, can significantly improve throughput and reduce key 

generation time. Additionally, packaging cryptographic algorithms and key generation in a chip 

enhances physical security, as they cannot easily be read or altered by external attackers.Some 

implementations use field programmable gate arrays (FPGA), while others use application-specific 

integrated circuits (ASIC). ASICs lack flexibility and have high development costs and long 

development cycles. The AES algorithm has become the default choice for various security services 

due to its security and versatility. This paper proposes a high-speed, non-pipelined FPGA 

implementation of the AES-CCMP cipher for wireless LAN, utilizing Xilinx development tools and 

Virtex-It Pro FPGA circuits. The AES CCMP core aims to provide high speed with sufficient security, 

operating at 194/148MHz for encryption/decryption, resulting in throughputs of 2.257 Gbits/sec and 

1.722 Gbits/sec, respectively. Compared to software implementations, hardware-based approaches 

offer higher security and faster encryption speeds. The paper includes a comparison with similar 

existing implementations. The AES S-box, comprising a 256-entry table, replaces each input byte of 

the State matrix independently. The S-box performs two transformations: first, replacing each input 

byte with its multiplicative inverse in GF(28), with the element {00} being mapped onto itself; second, 

applying an affine transformation over GF(28). For decryption, the inverse S-box is obtained by 

applying the inverse affine transformation followed by multiplicative inversion in GF(28).The 

increasing need for data protection in computer networks has led to the development of several 

cryptographic algorithms. Hardware implementations of these algorithms are more physically secure 

than software implementations, as they cannot be easily modified by outside attackers. Hardware 

implementation offers better speed and reliability, making it a wise choice for achieving higher 

performance in today's heavily loaded communication networks. This paper presents a hardware 

implementation of the AES algorithm using Xilinx– Virtex5 Field Programmable Gate Array (FPGA). 

To achieve higher speed and lower area, operations like Sub Byte, Inverse Sub Byte, Mix Column, and 

Inverse Mix Column are designed as Look Up Tables (LUTs) and Read Only Memories (ROMs). 

Encryption is typically performed just before data transmission to fully utilize channel resources, 

requiring the encryption algorithm to match the data transmission speed. Achieving high throughput 

for encryption in a communication channel with a high data rate is challenging. The AES algorithm 

(also known as the Rijndael algorithm) is widely used in wired and wireless digital communication 

networks for secure data transmission, especially over public networks. This paper presents a hardware 

implementation of the AES Rijndael Encryption and Decryption Algorithm using Xilinx Virtex-7 

FPGA. The hardware design is based on pre-calculated look-up tables (LUTs), resulting in a less 

complex architecture with high throughput and low latency. The AES has three formats: AES-128, 

AES-192, and AES-256, and the encryption and decryption blocks for all three formats are efficiently 

designed using Verilog-HDL and synthesized on a Virtex-7 XC7VX690T chip. Power analysis is 

conducted using Xilinx XPower Analyzer, and the proposed architecture demonstrates good efficiency 

in terms of latency, throughput, speed/delay, area, and power.The Advanced Encryption Standard 

(AES) is an approved cryptographic algorithm that can protect electronic data and can be programmed 

in software or implemented in pure hardware. Field Programmable Gate Arrays (FPGAs) offer a faster 

and more customizable solution for AES implementation. This paper presents the implementation of 

AES on FPGA using VHDL and ModelSim SE PLUS 5.7g software for simulation and optimization 

of synthesizable VHDL code. The code is synthesized and implemented on Xilinx - Project Navigator, 

ISE 8.2i suite, using an iterative design approach to minimize hardware consumption. The proposed 

architecture integrates the AES encrypter and decrypter, resulting in a low-complexity architecture 

suitable for hardware-critical applications like smart cards, PDAs, and mobile phones. Additionally, a 

speech encryption algorithm based on a 4D hyper chaotic system is proposed to protect speech security 

in the cloud, showing good discrimination, robustness, recall, precision, and retrieval efficiency 

compared to existing methods[1-7]. 
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2. Proposed Method 

2.1 INTRODUCTION OF DES 

DES (Data Encryption Standard) algorithm purpose is to provide a standard method for protecting 

sensitive commercial and unclassified data. In this same key used for encryption and decryption 

process. 

2.2 ENCRYPTION AND DECRYPTION 

 
Figure.1 DES Algorithm 

DES processes a 64-bit plaintext input and a 56-bit key (with 8 parity bits), producing a 64-bit output 

block. 

2.3 STEPS INVOLVED IN DES ALGORITHM 

The plaintext block undergoes bit shifting operations. 

The 8 parity bits are removed from the key using a key permutation. 

The plaintext and key undergo the following process: 

The key is divided into two 28-bit halves. 

Each half of the key is rotated by one or two bits, depending on the round. 

The rotated halves are combined and subjected to a compression permutation to reduce the key to 48 

bits, which is used to encrypt the current round's plaintext block. 

The rotated key halves from the previous step are used in the next round. 

The data block is divided into two 32-bit halves. 

One half undergoes an expansion permutation to increase its size to 48 bits. 

The result of step 6 is XORed with the 48-bit compressed key from step 3. 

The output of step 7 is passed through an S-box, which substitutes key bits and reduces the block back 

to 32 bits. 

The output of step 8 undergoes a P-box permutation. 

The result from the P-box is XORed with the other half of the data block. The two halves are then 

swapped and become the input for the next round. 

2.4 ADVANCED ENCRYPTION STANDARD 

In the AES method, we implement AES-128, using a 128-bit key for encrypting 128-bit data with the 

same S-box. The encryption process involves 14 rounds, with each round comprising Add Round Key, 

SubBytes, ShiftRows, and MixColumns operations. Round 0 includes only the Add Round Key 

operation, while Round 14 includes SubBytes, ShiftRows, and Add Round Key operations, requiring 

3 clock cycles. Rounds 1 to 13 encompass all four operations, with each operation executed in a distinct 

clock cycle. Consequently, once the hardware is implemented for Add Round Key, SubBytes, 
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ShiftRows, and MixColumns, the same hardware can be used for all 14 rounds, as none of the 

operations share the same clock cycle. 

 
Figure.2. AES Algorithm 

The AES encryption process consists of a specific sequence of four operations, namely AddRoundKey, 

SubBytes, ShiftRows, and MixColumns. This process is serial, meaning the output of one round 

becomes the input for the next round. Consequently, the same hardware can be utilized for each round. 

The data is structured in a 128-bit matrix, where each column contains four elements of 8 bits each, 

totaling 32 bits per word. For the conventional AES algorithm, a total of one S-box and one 

MixColumns operation are required. 

2.5 IMPLEMENTATION OF AES ALGORITHM 

The AES algorithm implementation involves four operations: SubBytes, ShiftRows, MixColumns, and 

AddRoundKey. The architecture for the 256-bit AES algorithm is depicted above. There are a total of 

14 rounds for both encryption and decryption. After encryption, the ciphertext is transmitted across the 

channel and decrypted using the same key. 

In the 128-bit AES algorithm, the key size is 128 bits, and all data sizes are 128 bits, including the 

message to be encrypted, the ciphertext, and the decrypted message. The internal data structure for 

128-bit data is a 4x4 matrix, where each element is 8 bits. Since all operations are performed on a 

column basis, the 128-bit data is converted into a 4x4 matrix with each element being 8 bits. 

The 128-bit AES encryption block is implemented in 14 rounds, with each round consisting of 

AddRoundKey, SubBytes, ShiftRows, and MixColumns. Round 0 involves only the AddRoundKey 

operation, while Round 14 includes SubBytes, ShiftRows, and AddRoundKey operations, requiring 3 

clock cycles. Rounds 1 to 13 include all four operations. Each operation is performed in a distinct clock 

cycle. Therefore, once the hardware is implemented for AddRoundKey, SubBytes, ShiftRows, and 

MixColumns, it can be used for all 14 rounds without sharing clock cycles. The sequence of round 

operations with the specific sequence of operations is shown in the figure above, illustrating the serial 

process of the AES algorithm where the output of one round is the input to the next, allowing for the 

use of the same hardware for each round. 

 
Figure.3. Mathematical Expression 
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Figure.4. Cycles required in Each Round 

2.6 5.3 FOUR STAGES OF EACH ROUND 

SubBytes: The SubBytes transformation, used in encryption, involves substituting each byte of the 

state with a value from a lookup table called the S-Box. This is a non-linear byte substitution applied 

independently to each byte of the state. For decryption, the inverse operation, InvSubBytes, is used. 

ShiftRows: The ShiftRows operation in encryption involves shifting the bytes in each row of the state 

matrix to the left. The number of shifts is based on the row number: no shift for row 0, 1 shift for row 

1, 2 shifts for row 2, and 3 shifts for row 3. MixColumns: The MixColumns transformation operates 

on the columns of the state matrix, transforming each column into a new column using matrix 

multiplication with a constant square matrix. This transformation is performed in the Galois Field, 

treating the bytes as polynomials rather than simple numbers. AddRoundKey: The AddRoundKey 

operation is applied one column at a time, similar to MixColumns. It involves adding a round key to 

each column matrix, performing a matrix addition operation. 

2.7 5.4 ENCRYPTION AND DECRYPTION 

In encryption, SubBytes, ShiftRows, MixColumns, and AddRoundKey are performed in all rounds 

except the last round. The MixColumns transformation is omitted in the final round of encryption. For 

decryption, the process mirrors encryption, but with nine rounds of InverseShiftRows, InverseSubBytes, 

InverseAddRoundKey, and InverseMixColumns transformations. 

2.8 5.5 RIJNDAEL S-BOX 

The Rijndael S-Box is a square matrix used in the Rijndael cipher, functioning as a look-up table. It is 

generated through a process that involves determining the multiplicative inverse of a given number in 

GF(28) and then applying an affine transformation to the result. 

Multiplicative Inverse Phase: In this phase, the input byte is inverted by substituting a value from the 

multiplicative inverse table. 

Affine Transformation: The selection of the irreducible polynomial and the designated byte are crucial 

in this phase. For Rijndael AES, the irreducible polynomial x^8 + x^4 + x^3 + x + 1 is used, and the 

designated byte 0x63 is chosen. The affine transformation consists of two operations: multiplication of 

an 8x8 square matrix and addition of an 8x1 constant column matrix. 

 

3.Results and Discussion 

3.1 RTL SCHEMATIC OF AES 

 

Figure.5. RTL Schematic of AES 
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3.1.1 SIMULATION RESULTS OF AES 

Figure.6. Simulation results of AES 

3.2 AREA IN AES 

Figure.7. Area in AES 

3.3 DELAY IN AES 

Figure.8. Delay in AES 

3.4 RTL SCHEMATIC OF DES: 

 

 

Figure.9. RTL Schematic of DES 
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3.5 SIMULATION RESULTS OF DES 

 

Figure.10. Simulation results of DES 

3.6 AREA IN DES 

 

Figure.11. Area in DES 

3.7 DELAY IN DES 

 

Figure.12. Delay in DES 

3.8 EVALUATION TABLE FOR AREA, DELAY 

 Area (LUT’s) Delay (ns) 

AES TOP(128-bit) 4636 6.548 

DES TOP(64-bit) 688 3.521 

 

3.9 Advantages- Dis-Advantages and Applications 

ADVANTAGES: AES ADVANTAGES: 

➢ High security. 

➢ Resistance to attacks. 

➢ Speed of Operation. 

DES ADVANTAGES: 

➢ Simplicity. 

➢ Compatibility. 

DISADVANTAGES: AES DISADVANTAGES: 

➢ 192 and 256 have far less security. 

➢ Hard to implement with software. 

DES DISADVANTAGES: 

➢ Weakly secured algorithm. 

➢ It is slower than AES. 

➢ It is not flexible. 

Cloud Storage: Data stored in the cloud is encrypted before transmission and stored securely. 

Encryption keys can be managed by the user or the cloud service provider, and access to encrypted 

data is controlled through authentication mechanisms. Decryption involves retrieving the encrypted 
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data and using the appropriate decryption key. VLSI-based cryptographic hardware accelerators can 

improve decryption performance, enabling fast and secure access to cloud-stored data. 

VPNs and Wi-Fi Security Protocols: VPNs and Wi-Fi security protocols use encryption algorithms to 

secure data during transmission. Data is encrypted at the source and decrypted at the destination. This 

process ensures data confidentiality and security while traveling over the network. 

Mobile Apps (e.g., WhatsApp and LastPass): Some mobile apps implement end-to-end encryption, 

where data is encrypted on the sender's device and decrypted only on the recipient's device. This 

approach prevents intermediaries from accessing or intercepting the data. Robust encryption 

mechanisms and secure communication protocols in mobile apps protect user data from unauthorized 

access. 

 

4. Conclusion 

After conducting a comparative analysis of AES and DES for security applications, it can be concluded 

that AES is more secure and efficient than DES. AES is a symmetric encryption algorithm that utilizes 

larger key sizes (128-bit, 192-bit, or 256-bit) compared to DES, which uses a fixed 56-bit key. AES 

offers superior resistance to cryptographic attacks, such as brute-force attacks and differential 

cryptanalysis, due to its larger key size and more complex key scheduling algorithm. Conversely, DES 

has been shown to be vulnerable to various attacks, including brute-force attacks, differential 

cryptanalysis, and linear cryptanalysis. Additionally, DES is slower than AES due to its simpler key 

scheduling algorithm. In terms of implementation, AES is widely utilized in a variety of security 

applications, including online banking, data encryption, and military applications, while DES is 

seldom used in modern systems due to its vulnerabilities and limitations. Overall, AES is a more secure 

and efficient encryption algorithm than DES and is the preferred choice for most security applications. 
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